
www.manaraa.com

Hybrid Attribute-Based Encryption and Re-Encryption

for Scalable Mobile Applications in Clouds

Piotr K. Tysowski and M. Anwarul Hasan
Dept. of Electrical & Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

pktysowski@uwaterloo.ca and ahasan@uwaterloo.ca

Abstract

Outsourcing data to the cloud is beneficial for reasons of economy, scalability, and accessi-
bility, but significant technical challenges remain. Sensitive data stored in the cloud must be
protected from being read in the clear by a cloud provider that is honest-but-curious. Addi-
tionally, cloud-based data is increasingly being accessed by resource-constrained mobile devices
for which the processing and communication cost must be minimized. Novel modifications to
attribute-based encryption are proposed to allow authorized users access to cloud data based
on the satisfaction of required attributes such that the higher computational load from crypto-
graphic operations is assigned to the cloud provider and the total communication cost is lowered
for the mobile user. Furthermore, data re-encryption may be optionally performed by the cloud
provider to reduce the expense of user revocation in a mobile user environment while preserv-
ing the privacy of user data stored in the cloud. The proposed protocol has been realized on
commercially popular mobile and cloud platforms to demonstrate real-world benchmarks which
show the efficacy of the scheme. A simulation calibrated with the benchmark results shows
the scalability potential of the scheme in the context of a typical workload in a mobile cloud
computing system.

1 Introduction

Cloud computing offers the advantages of highly scalable and reliable storage on third-party servers.
Its economical pay-per-use model typically results in a small fraction of the cost of deploying the
same computing resources in-house. Data outsourcing to a cloud is appropriate for any class of
applications that requires data to be kept in storage and disseminated to many users. Clients that
engage a cloud provider typically only pay for the amount of storage, related computation, and
amount of network communication actually consumed; they do not incur the capital and main-
tenance costs of an in-house solution. In addition, the cloud provider offers the advantages of
automatic backup and replication to ensure the safety, longevity, and high accessibility of the user
data. A major concern that is typically not sufficiently addressed in practice, however, is that data,
by default, is stored in the clear; it may be accessed and read by a cloud administrator without
knowledge of the client. A cloud administrator may not be trusted despite the presence of con-
tractual security obligations, if data security is not further enforced through technical means. An
additional risk is that sensitive data carries the persistent risk of being intercepted by an unautho-
rized party and possibly manipulated, despite safeguards promised by the provider. Therefore, it
is useful to apply software techniques, such as encryption keys, to ensure that the confidentiality

1



www.manaraa.com

of cloud data is preserved at all times. It is especially crucial to safeguard sensitive user data such
as e-mails, personal customer information, financial records, and medical records.

It must also be recognized that the recent trend in contemporary cloud computing applications
is for cloud data to be accessed primarily by resource-constrained mobile devices, a practice known
as mobile cloud computing. This device category includes users of smartphones and tablets; in
some applications, it is appropriate to consider smart wireless sensors in the same mix. Hence, any
protocol providing additional security must not add burdensome costs to a mobile user; specifically,
the number of transmissions must be minimized to conserve the battery and over-the-air data usage
fees, and the amount of computation must also be minimized to avoid adding significant delays to
the user experience while further decreasing battery life. Another important requirement is for data
to be addressable with fine-grained access controls on the record-level or finer, to provide flexibility.
A single user log-in is largely insufficient in today’s complex data retrieval.

The main contributions of the proposed work are as follows:

1. A protocol for outsourcing data storage to a cloud provider in secure fashion is provided. The
cloud provider is unable to read stored data; authorized users may do so based on qualification
through possession of the right attributes without arbitration by the data owner. The protocol
is designed to be efficient for resource-constrained mobile users by delegating computation and
requests to a cloud provider or trusted authority, where appropriate, without compromising
security.

2. An improvement is made over a traditional attribute-based encryption scheme, such that
responsibility over key generation is divided between a mobile data owner and a trusted
authority; the owner is relieved of the highest computational burden.

3. Additional security is provided through a group keying mechanism; the data owner controls
access based on the distribution of an additional secret key, beyond possession of the required
attributes. This additional security measure is an optional variant applicable to highly sen-
sitive data subject to frequent access.

4. Re-encryption, as a process of transforming the stored ciphertext, permits efficient revocation
of users; it does not require removal of attributes and subsequent key regeneration, and may
be administered by a trusted authority without involvement of the data owner.

In Section 2, related work on key management to secure cloud data storage is presented, with
a focus on attribute-based schemes in the context of applications accessed by mobile devices. In
Section 3, a system model encompassing a mobile cloud computing system is presented, as well as
a model of trust that is assumed for its security. In Section 4, the proposed algorithm for attribute-
based encryption and re-encryption suitable for mobile users of the cloud is presented. In Section 5,
optional features of the algorithm such as delegation are presented, for completeness. In Section 6,
the algorithm is assessed for its usefulness in a mobile cloud computing system. In Section 7, the
results of an implementation of the proposed scheme on actual mobile devices and an operational
cloud system are presented and discussed; a simulation is then used to demonstrate its scalability
potential. Finally, Section 8 provides concluding remarks.

2 Related work

Numerous solutions may be envisaged to exchange encrypted data with a cloud provider in a
secure manner, such that the cloud provider is not directly entrusted with key material, but näıve

2



www.manaraa.com

schemes often prove difficult to scale. For instance, the main drawback of a scheme based on the
use of a public key management system using RSA is that it requires that the data owner provide
an encrypted version of data for each recipient that may access the same data, which becomes
impractical once the system scales significantly. If user data is encrypted with a single key, then
that key must be shared with all authorized users, which carries a high traffic cost especially if this
obligation rests on a mobile data owner.

Users may join and leave the authorized user set frequently, leading to constant key re-generation
and re-distribution through additional communication sessions to handle user revocation; in a highly
scaleable system composed of thousands of users, such events may occur at relatively high frequency.
Wireless communication, however, is expensive and results in rapid battery drain, particularly when
transmitting [1].

The technique of Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [2] offers numerous
advantages in the envisioned target environment. It allows a user to obtain access to encrypted
data in the cloud based on the possession of certain attributes that satisfy an access structure
defined in the cloud, rather than the possession of a particular individual or group key that must
be disseminated to all interested parties in advance. The requisite attributes may be determined
by a data owner in advance; this owner is responsible for generating the user data to be shared,
encrypting it, and uploading it to the cloud. Unauthorized access to stored data is not in itself an
issue due to the protection afforded by CP-ABE. Furthermore, the data owner is not required in
every data transaction involving other users, which is advantageous in the case where “always-on”
connectivity cannot be guaranteed. It is impossible for any two users to collude by combining
their individual attributes to gain access that would otherwise not have been individually granted.
Normally, a scheme based on CP-ABE relies upon the data owner granting access permission
through an access tree, which requires some level of availability. Some works have modified CP-
ABE so that key material is distributed among multiple parties; for instance, a data owner and
a trusted authorizer may function in concert to grant access permission to other users, building
on the OAuth standard [3]; the solution, however, is not tailored for a mobile environment due
to its computational demands, constant availability of the data owner that is required, and use of
time-based expiration of access that leads to frequent key retrieval.

Revocation of an authorized user is particularly difficult to accomplish efficiently in CP-ABE and
is usually addressed by extending attributes with expiration dates or by an authority distributing
keys with expiration dates [2]. In some cases, a tree of revocable attributes may need to be
maintained and a trusted party assigned to validate the revocation statuses of users; the access
control may be system-wide or more fine-grained. A revocation mechanism using linear secret
sharing and binary tree techniques, where each user is associated with an identifier on a revocation
tree, is one example [4]. The difficulty with this general approach in a mobile context is that it
results in mobile users having to incur the communication cost of continually requesting new keys,
while wireless communication always remains expensive. Also, the data owner is typically a mobile
user as well, and thus the owner cannot effectively manage access control on demand for other users
due to its transient connectivity. Revocation for data outsourcing purposes has been proposed that
relies on stateless key distribution and access control on the attribute level, but requires a trusted
authority and encumbers the data owner with a pairing operation [5], a cryptographic function
that is very computationally expensive.

To handle revocation in a highly scalable system, a scheme has been proposed that uses the cloud
provider for distributing portions of key material and for automatic and blind data re-encryption
[6], such that the plaintext cannot be recovered in the process. As with many other schemes,
it relies upon the presence of a trusted manager which is an additional network component that
must be scaled and maintained itself. While effectively handling changes in user memberships,

3



www.manaraa.com

its limitation is that it requires granting access solely based on user identity, as opposed to the
attributes held by users. Various other proxy re-encryption schemes have been applied to secure
distributed storage. For instance, an access control server may securely store content keys within
a lockbox that is re-encrypted on-demand to allow an authorized user to access the content keys,
although it requires the data owner to be present and aid in the re-encryption task [7].

As a next step in the evolution of such techniques, proxy re-encryption has been combined with
CP-ABE [8] such that re-encryption keys are computed by the cloud provider based on a secret
that is pre-shared between the data owner and the provider, as well as the provider’s internal clock.
The re-encryption keys must be computed for all attributes in the access structure, which could
be very numerous. Another idea is to securely embed the data key within the header of the record
stored in the cloud [9]; a privileged manager group is responsible for generation of re-encryption
keys, but it must also distribute the secret header key to the recipient to complete the process.

3 Model of mobile cloud computing

3.1 System model

A CSP (Cloud Service Provider), simply referred to as a “cloud,” provides permanent data storage
in a centralized data centre or a small host of geographically dispersed but interconnected centres.
The user data stored in the cloud may be directly accessed by users over the public Internet
infrastructure by referencing a particular data partition.

On the client end, many users will operate portable devices such as smartphones or tablets that
are significantly more limited than desktop computers in terms of on-board memory, processors,
useful operating life, and available network bandwidth. Due to the nature of wireless networks,
mobile users will likely suffer from transient connectivity such that their constant availability in
the system cannot be guaranteed.

The system model of the proposed work is shown in Figure 1. Inside the public cloud, a
controller administrates access through external client interfaces. Requests, including data uploads
and downloads, are made over the reliable but insecure medium of the Internet; a wireless packet
data infrastructure serves to bridge mobile users. The manager is a trusted self-supporting network
component that may be situated behind an organization’s firewall and form part of a private cloud
belonging to the client. It may maintain a database of private key information relating to a set
of authorized mobile users. Inside the cloud, the controller maintains a complementary public key
information database, and stores and reads user data on behalf of clients to and from the permanent
and replicated data store. The user data may periodically undergo cryptographic transformation,
such as re-encryption from one version of ciphertext to another; such activities are dispatched
on-the-fly or alternatively at off-peak times by eligible worker processes initiated by the controller.

A mobile user may act as a data owner and decide what access privileges are appropriate
for the data that it uploads to the cloud and retains control over; a specific subset of the user
population may be identified as having sufficient permission based on unique identities, or users
may be assigned various distinguishing attributes that inherently grant permission regardless of
the specific identity that assumes them. A highly scalable system is envisioned where users may
number potentially in the thousands or millions. Continuous arbitration by a single data owner
during all transactions is impractical, as a mobile user is subject to a limited battery and transient
connectivity.

Possible applications of the secure data outsourcing approach suggested here include highly-
collaborative enterprise services, secure data storage and retrieval, and social networking sites.

4



www.manaraa.com

Manager
(trusted authority)

Data 
owner

...

Data store

Controller

Cloud Service Provider

Public group key
directory

Firewall

Private group 
key store

Authorized mobile user set belonging to client

Re-encryption 
task

Wireless medium and/or Internet

User

Figure 1: System model.

3.2 Trust model

The cloud provider is assumed to be honest-but-curious in practice; it will generally obey a com-
munications protocol and deployed application logic, and will not deny service to any authorized
party. At the same time, a cloud administrator may read the contents of user data stored in the
cloud for nefarious reasons or simply out of curiosity. A party with administrator privileges may
even copy or modify data without the client’s knowledge. Thus, data stored in the cloud should
remain encrypted at all times, and any required transformation of it should not reveal the plaintext
in the process. The communications channel between a user and the cloud is open and subject to
eavesdropping; thus, sensitive user data may not be exchanged in the clear.

The manager is a trusted authority within the system and is administered under the domain of
the users in question; it is completely independent of the CSP. It is sufficiently trusted to authorize
access to the cloud and to contain key material as necessary; however, to minimize the risk of it
being compromised, a user will only share as much of its own key material with the manager as is
necessary in the security scheme utilized. Furthermore, the manager will not be as economical as
a cloud provider due to its more limited computational resources.

4 Proposed algorithm

The proposed algorithm for key generation, distribution, and usage is now described. It consists
of key management techniques that ensure highly secure data outsourcing to the cloud in a highly
scaleable manner for mobile cloud computing applications. Table 4 summarizes the symbolic no-
tation used throughout the description.

5



www.manaraa.com

Symbol Description

CSP Cloud service provider.
M Trusted manager.
T Access tree structure.
R Root node of T .
A Set of attributes that must be satisfied against T .
Uo Data owner.
Ur Restricted user group.
m Plaintext of user data.
CT Ciphertext of user data.
v Version of ciphertext.
PPK Public partition key.
PSK Secret partition key.
OPK Owner public key.
OSK Owner secret key.
DSK Data secret key.
GPK Public group key of Ur.
GSK Private group key of Ur.
DDSK Delegated data secret key.
RK0→x Re-encryption key from version 0 to x.

Table 1: Legend for symbolic notation.

Improvements are proposed to the basic functions of the original CP-ABE scheme [2] as follows:

• A single authority does not generate all key material; the mobile data owner and cloud entity
co-operate to jointly compute keys. The cloud provider has insufficient information to decode
the user data that it permanently stores; yet, it assists in the distribution of a portion of the
whole key material to all authorized users to minimize the communication cost for the data
owner.

• The cloud has highly scalable computational ability, unlike a resource-constrained mobile
user. A trusted manager is also better equipped than a user. Pairing operations, which are
the most expensive cryptographic operations that are involved in the proposed protocol, are
thus performed by the cloud or manager entities to the maximum possible extent, relieving
the burden on the mobile data owner.

• Proxy-based re-encryption has been integrated with CP-ABE so that the cloud provider
may perform automatic data re-encryption; this is an optional feature that allows further
control over revocation than is afforded by an attribute-based scheme alone, and it also takes
advantage of the cloud provider’s computational scalability. This dual-encryption scheme is
a hybrid approach that offers greater flexibility in access control.

The proposed technique is now described as follows:

Preliminary:
Let G0 and G1 be cyclic bilinear groups of prime order p with generator g. Also defined are

random exponents α, β ∈ Z∗p. The bilinear map e is a map such that: e : G0 × G0 → G1 with the
following properties:

• Bilinearity: ∀g0, g1 ∈ G0 : e(gα0 , g
β
1 ) = e(g0, g1)

αβ.

6



www.manaraa.com

• Non-degeneracy: e(g0, g1) 6= 1.

• Computability: ∀g0, g1 ∈ G0, there is an efficient algorithm to compute e(g0, g1).

A secure one-way hash function H : 0, 1∗ → G0 is used as a random oracle and maps an attribute
described as a binary string to a random group element.

Setup() → PPK,PSK,OSK:
Suppose that Alice is a mobile user that acts as the self-elected data owner Uo of plaintext

message m, which is user data that is desired to be encrypted and shared in the cloud with other
authorized users.

If m exceeds the maximum allowed block length, then two solutions are possible: segmentation
of the message may be performed, and the encryption applied to each individual segment; or, it
is possible to first apply a symmetric cipher such as 256-bit AES to the entire message, then to
encrypt the AES key itself using the proposed scheme, with the steps being reversed on decryption.
Regardless, the length of the message does not impact the size or number of encryption keys
required. In the case of message segmentation, the same pre-computed keys may be applied to all
segments.

A manager M , acting as a trusted entity, chooses a random value α and computes gα to
form a private partition key PSK. It then performs a pairing operation to compute component
e(g, g)α, which becomes one of the components forming the public partition key PPK. The public
parameters G0 and g are also included in PPK. In the meantime, Uo chooses a secret data owner

key OSK equal to β. It then computes the components gβ and g
1
β , the latter by first taking the

inverse of OSK (i.e. 1
β ) in its possession; these components are added to the public key PPK,

which is then uploaded and published in the public directory of the cloud. Uo does not divulge
its secret OSK to any other party, including M . The elements of PPK, PSK, and OSK are as
follows:

PPK =
{
G0, g, g

β, g
1
β , e(g, g)α

}
PSK = {α, gα}, OSK = {β}

To provide an additional layer of security, an individual user or a restricted subset of users Ur
may create their own shared group key GSK equal to a random value u0 ∈ Z∗p, and a public key
GPK as follows:

GPK = {gu0} , GSK = {u0}

This group key is uploaded to the public directory as well. The secret key is not shared with the
cloud; it may however be shared with the manager for the purpose of distribution to all authorized
users. The initial version number of the secret key is initially referred to as 0, and will increase
monotonically.

Encrypt(PPK,GPK,m, T ) → CT :
Any user may access the public partition key PPK, by downloading it from the public directory

in the cloud, to perform an encryption; it need not necessarily be the data owner.
The encryption algorithm takes as input the key PPK and encrypts a message m under the

tree access structure T with root R as described in [2]. It chooses a polynomial qx for each node
x in T , and a random value s ∈ Z∗p that is applied to the PPK parameters. It sets qR(0) = s for
the root node R, while Y denotes the set of leaf nodes in T . The function γ(y) extracts the binary
attribute string from a leaf node y in Y .

7



www.manaraa.com

In order to protect highly sensitive data, the encryptor may wish to restrict user membership
requirements beyond possession of the required attributes A. To do so, an additional key component
may be incorporated consisting of e(g, g)u0s, computed from gu0 , which is the public key GPK of
a restricted user group Ur belonging to the entire population of users. The group consists of one
or more members, and is available from the public directory in the cloud. The absence of this
component, where u0 is presumed to be nil, will allow decryption based on satisfaction of the
access tree only.

The intermediate ciphertext CTown is constructed as follows by the data owner Uo and uploaded
to the cloud:

CTown =
{
v = 0, T, C0msg = m · e(g, g)αs, C0grp = gu0s,

C ′ = gβs, ∀y ∈ Y : Cy = gqy(0), C ′y = H(γ(y))qy(0)
} (1)

Next, the CSP performs a pairing operation on the C0grp component in CTown to obtain the

result Ĉ0grp = e(g, g)u0s. The final ciphertext CT0, denoting the initial version v of 0, is constructed
as follows and published in the permanent data store of the cloud:

C̃0 = C0msg · Ĉ0grp = m · e(g, g)αs · e(g, g)u0s = m · e(g, g)αs+u0s

CT0 =
{
v = 0, T, C̃0, C0msg , C

′ = gβs, ∀y ∈ Y : Cy, C
′
y

} (2)

Re-Encrypt(CT0, RK0→x) → CTx:
Whenever a user leaves the authorized membership of Ur, the user’s access rights to the cipher-

text must be revoked. When this occurs, a new version of the secret group key GSK is normally
distributed by the manager to the remaining authorized users in Ur, or distributed to each user
on-demand through a secure off-line channel whenever data access is required.

The CSP is then requested to perform a re-encryption operation on-demand so that its stored
ciphertext can no longer be decoded using the prior version of the key. The ciphertext is re-
encrypted from version 0 to version x, given a re-encryption key RK0→x from a user holding group
secret key GSKx assigned to version x; or, RK0→x may be transmitted by the manager which
is entrusted with the safekeeping of the key GSKx. The re-encryption key is computed from the
secret group key values u0 and ux corresponding to versions 0 and x of the ciphertext:

RK0→x =
{
g
ux
u0

}
The cloud provider computes the new ciphertext CTx corresponding to version x (that is newer

than the original version 0 uploaded by the encryptor), as follows, utilizing the component C0msg

found in CT0 in Equation 2:

C̃x = C0msg · e(C0grp , RK0→x) = m · e(g, g)αs · e(gu0s, g
ux
u0 ) = m · e(g, g)αs+uxs

CTx =
{
v = x, T, C̃x, Cxbase = guxs, C ′,∀y ∈ Y : Cy, C

′
y

}
The CSP is unable to decode the ciphertext during the re-encryption process as it has no

knowledge of the old key u0 and the new key ux. The cloud provider retains the component Cxbase
in the ciphertext CTx so that it may perform a future re-encryption from version x to y, where
y > x.

8



www.manaraa.com

KeyGen(PPK,PSK,A) → DSK:
Irrespective of which party performed the encryption, the manager executes a data secret key

generation algorithm which takes as input the private key PSK and a set of attributes A that are
deemed sufficient to decrypt the ciphertext. Specifically, the manager chooses a random r ∈ Z∗p and

computes (α+ r); it then exponentiates the component g
1
β in the PPK by this sum to obtain the

result g
(α+r)
β = (g

1
β )α+r. In this way, during the collaboration, the manager and data owner do not

need to reveal their private keys PSK and OSK to one another. The data owner is not involved
in the key generation and need not remain available.

To generate the additional required sub-parts of the data key, the manager chooses random
rj ∈ Zp for each attribute in A. It computes the data secret key DSK that identifies with the
attributes A as follows:

DSK =

(
D = g

(α+r)
β ,∀j ∈ A : Dj = gr ·H(j)rj , D′j = grj

)
(3)

The manager distributes a DSK based on a unique r value to each authorized user holding the
required attributes A. The manager may also provide the DSK to the data owner for peer-to-peer
distribution at its discretion to the intended recipients of the encrypted message, without requiring
the participation of the data owner.

Decrypt(CT,DSK,PPK,GSK) → m:
Any user that is authorized, by virtue of holding the required attributes, may download the

ciphertext CT from the cloud and decrypt it, as the recipient. The decryption routine takes as
input the ciphertext CT and data secret key DSK obtained earlier either from the manager M or
data owner Uo. The recursive decryption algorithm DecryptNode is applied to the root node R
of the tree T that is publicly available on the cloud for download.

If the node x is a leaf node, then let i = γ(x), where the function γ denotes the attribute
associated with the leaf node x in T . If i ∈ A, then the DecryptNode function is defined as
follows, using components Di and D′i derived from the DSK, as found in Equation 3, and Cx and
C ′x derived from CTown, as found in Equation 1:

DecryptNode(CTown, DSK, x) =
e(Di, Cx)

e(D′i, C
′
x)

=
e(gr ·H(i)ri , gqx(0))

e(gri , H(i)qx(0))

=
e(gr · gδri , gqx(0))
e(gri , gδqx(0))

= e(g, g)rqx(0)

The recursive case, when x is a non-leaf node, is described in detail in [2]. If the access
tree is satisfied by attributes A (that determined the data secret key DSK), observe that the
DecryptNode function gives the following result:

DecryptNode(CTown, DSK,R) = e(g, g)rqR(0) = e(g, g)rs

If the ciphertext is optionally encoded with the public key of the restricted user group Ur, then

the recipient may utilize the secret key GSK = ux in conjunction with the g
1
β component in the

PPK to compute the required decryption component g
ux
β .

The message m can then be decrypted as follows:

m =
C · e(g, g)rs

e(gβs, D) · e(gβs, g
ux
β )

=
m · e(g, g)αs+uxs · e(g, g)rs

e(gβs, g
(α+r)
β ) · e(gβs, g

ux
β )

=
m ·((((((((

e(g, g)(α+r+ux)s

((((((((
e(g, g)(α+r+ux)s

9



www.manaraa.com

Note that the component e(gβs, g
(α+r)
β ) in the above equation is pre-computed by the manager,

so that the user must perform only one pairing operation on decryption.
A summary of the key material in possession within the system is given in Table 4. The

cryptographic operations described in this section, applied to a typical encryption and decryption
transaction, are summarized in Table 5.

Entity Key material

Data owner (Uo) Chooses random β. Computes: OSK = {β}, OPK = {gβ , g
1
β }

Chooses random uo. Computes: GSK = {u0}, GPK = {gu0}
Shares GSK with user B.
Chooses random s. Computes CTown based on the PPK and GPK, and uploads it
to CSP .

Manager (M) Chooses random α. Computes: PSK = {α, gα}, PPK =
{
G0, g, g

β , g
1
β , e(g, g)α

}
Chooses random r. Computes: D = g

(α+r)
β , and DSK based on attributes A.

Distributes DSK to user B.
Cloud (CSP ) Optionally performs a pairing operation and computes CT0 from CTown and GPK.

Stores CT0 in the permanent data store.
Recipient (B) Downloads CT0 and decrypts it using the DSK and GSK.

Table 2: Summary of key material in the proposed protocol.

5 Optional features

The original CP-ABE scheme defined delegation, where following the generation of the data secret
key DSK, the manager may choose to delegate access to a user possessing a particular subset of the
required attributes. For completeness, the integration of this optional operation with the proposed
technique is shown:

Delegate(DSK,S′) → DDSK:
The delegation algorithm first takes as input a secret data key for a set of attributes A, and a

subset A′ ⊆ A. The manager chooses a new random r′ ∈ Z∗p and computes the result:

D′ = D · (g
1
β )r

′

The manager then chooses a new random r′k for each attribute k in the subset S′ to form the
next sub-part, and creates a new secret delegation data key DDSK for S′:

DDSK =
(
D′ = D · (g

1
β )r

′
,∀k ∈ A′ : D′k = Dk · gr

′ ·H(k)r
′
k , D′′k = D′k · grk

)
Since the delegation key is randomized with the value r′, it is equivalent in its level of security

to the original key DSK. Note that the data owner is not involved in this operation.

6 Discussion

The proposed scheme offers a dual layer of security through attribute-based encryption and also
public key encryption which may be optionally applied. If the secret group key GSK is compro-
mised, the data is still safeguarded; only the users that have the required attributes will be able to

10



www.manaraa.com

Alice (Uo) Cloud (CSP ) Manager (M) Bob (∈ Ur)
1 Generates private

owner key OSK and
sends public compo-
nent OPK to M to
form partition key
PPK. Generates pri-
vate and public group
keys GSK and GPK
to share with trusted
users and the CSP .

Stores partition key
PPK obtained fromM
in a public directory for
dissemination to all au-
thorized users. Also
stores the public group
key GPK that it ob-
tains from Alice.

Generates private and
public partition keys
PSK and PPK, the
latter with assistance
from Alice, and up-
loads PPK to CSP .

Obtains GSK from Al-
ice as a trusted user.

2 Assuming that Alice is
also the encryptor, en-
crypts message m, with
PPK and under tree
T , as CTown, and up-
loads it to CSP for
storage. Also generates
a component for data
key DSK from OSK.

Computes CTo from
CTown and GPK, and
stores it as ciphertext
version 0 in permanent
storage, for dissemina-
tion to all authorized
users.

Generates data key
DSK from its private
partition key PSK
based on attributes A,
with assistance from
Alice. Distributes the
DSK to all authorized
users.

Obtains the DSK from
Alice or M .

3 Downloads CTo from
CSP and decrypts it to
yield the plaintext m.

Table 3: Summary of operations with participating user actors.

decrypt it. The interception of any key components over the network, including the re-encryption
key, will not yield useful information to the attacker, as no private keys are transmitted in the
clear. Furthermore, the algorithm achieves collusion resistance because the e(g, g)αs term of ci-
phertext CT cannot be recovered by an attacker even if the manager’s or a user’s private keys are
compromised.

Any user may encrypt data using the public partition key PPK stored in the cloud. However,
the cloud provider is unable to decrypt any user data stored on its premises as it cannot access the
secret owner and data keys OSK and DSK. Nor is useful information revealed to the CSP during
the re-encryption process.

The encryptor of a message may restrict its eligible readership by not only selecting a required
set of attributes, but also through the optional use of a public group key which may be shared
by a group or simply possessed by a single user. The trade-off made is the required distribution
of the group key and the extra pairing operation required during the encryption phase, but it is
advantageously computed by the cloud provider.

Critically, the performance implications are modest for the mobile users. The data owner must
only perform exponentiation operations during its key generation phases, while the manager per-
forms the more expensive pairing operation during partition key generation in the Setup algorithm.

If a group secret key is utilized, it may be advantageous for the manager to compute new
key versions and re-encryption keys, and manage their storage and distribution. A suitable key
versioning mechanism is suggested for this purpose, such as the one found in [6].

11



www.manaraa.com

7 Implementation

The proposed protocol was implemented and profiled to gauge its performance. It was realized on
popular existing commercial platforms, including the Google Android mobile and the Google App
Engine cloud platforms. A simulation calibrated to the performance benchmarks was then run to
examine the scalability of the proposed algorithm.

7.1 Performance measurement

An existing implementation of CP-ABE in Java [10], which relies upon the original CP-ABE scheme
[2], served as the baseline implementation. From this starting point, the implementation was
significantly rebuilt to reflect the proposed protocol described herein. The implementation uses
the Java Pairing-Based Cryptography Library (jPBC) [11], a port of the PBC (Pairing-Based
Cryptography Library) in C [12]. The use of Java 6 Standard Edition permits the protocol to be
ported to a wide range of computing environments.

The implementation was run on different computing hosts to assess their relative performance.
Refer to the implementation model in Figure 2. On the client end, a simulation was run on a desktop
platform consisting of an Apple iMac with a quad-core 64-bit 3.4 GHz Intel Core i7 processor with
16 GB of RAM, running Mac OS X 10.8.2 (Mountain Lion). Additionally, it was run on an older
Google Nexus One smartphone with a 1 GHz Qualcomm Scorpion processor with 512 MB memory
running Android OS 2.3.6 (Gingerbread), and a new Samsung Galaxy Note II smartphone with a
quad-core 1.6 GHz ARM Cortex-A9 processor with 2 GB of RAM, running Android OS 4.1.1 (Jelly
Bean). On the server end, a lowest-class F1 front-end instance was run as a Java servlet application
on the Google App Engine (GAE) cloud, configured at the equivalent of a 600 MHz processor with
128 MB of RAM. A connection was established between the desktop or mobile Android client and
an instance running on the GAE cloud via HTTP requests, using JSON for data interchange and
the Google Gson library for marshalling between Java objects (used by the Java client and server
implementations) and the JSON representation. Note that the security model of GAE does not
allow direct network connections and native code execution. Only a subset of the Java 2 Standard
Edition (J2SE) SDK 1.6 classes are whitelisted on Android and GAE; fortunately, the required
JCE classes are supported.

Google App 
Engine cloud

Android Nexus phone

J
S
O
N

J
S
O
N

Deployed 
server 

instance

Internet
Native Java 
client app

Android runtime

JCE and SSSJ libraries

HTTP requests
Java 

servlet

Figure 2: High-level model of implementation.

12



www.manaraa.com

The simulation consisted of multiple iterations of encryption and decryption using the proposed
functions defined in Section 4, using a single-attribute policy to configure an environment that ran
at the fastest possible speed. A “Type A” pairing was utilized in the algorithm, as specified in the
jPBC library source. Performance benchmark results are shown in Table 7.1, showing the average
execution times of all main cryptographic operations calculated from 100 simulation runs on the
same desktop computer platform to permit direct comparison. Simulations from the original BSW
algorithm [2] as well as the proposed algorithm are shown; in the latter case, one run was made
using an optional group key to additionally secure the plaintext, with a round of re-encryption
included, and one run was made without the benefit of a group key.

Cryptographic Baseline Proposed Proposed
function (BSW) (no GK) (with GK)

Setup by data owner. 46 22 31
Setup by manager. n/a 18 17
KeyGen. 68 70 66
Encrypt by data owner. 59 61 57
Encrypt by CSP. n/a n/a 17
Decrypt. 23 23 40
Re-Encrypt setup. n/a n/a 20
Re-Encrypt. n/a n/a 7

Table 4: Performance benchmarks (in ms) on an iMac desktop computer.

Next, operations were repeated on the appropriate platform (desktop, mobile, or cloud instance)
for each operation, to ascertain realistic timings in a mobile cloud computing system. A user
interface was built for the Android app to allow execution of all algorithms locally or on a Google
App Engine instance in the cloud, as depicted in Figure 3. The results are summarized in Table 7.1,
with the appropriate platform chosen to represent a typical device executing each operation in
question. Note that the underlying jPBC library is not optimized for a constrained mobile operating
environment; such optimizations may often yield very significant performance improvements in
practice. For instance, careful memory allocation and maintenance of a small footprint may reduce
the expensive garbage collection events observed on the Android devices during execution.

Cryptographic Device Baseline Proposed Proposed
function (BSW) (no GK) (with GK)

Setup by data owner. Note II 1157 396 586
Setup by manager. GAE n/a 278 219
KeyGen. GAE 791 749 786
Encrypt by data owner. Note II 1273 1250 1239
Encrypt by CSP. Note II n/a n/a 657
Decrypt. Note II 1364 1391 2043
Re-Encrypt setup. GAE n/a n/a 247
Re-Encrypt. GAE n/a n/a 130

Table 5: Performance benchmarks (in ms), with “Note II” denoting the Galaxy Note II mobile
phone, and “GAE” denoting an F1 instance running on a Google App Engine cloud servlet.

The comparative benchmarking results are shown visually in Figure 4. The following observa-
tions may be made:

• In comparison to the baseline implementation, the key setup activity in the proposed protocol

13



www.manaraa.com

Figure 3: User interface on the Android app used for benchmarking, running on the Nexus One
and Galaxy Note II smartphones.

is approximately evenly split between the data owner and the manager, which is of high benefit
given that the owner is presumed to be a resource-constrained mobile user.

• The key generation and encryption activities are approximately equal in terms of compu-
tational requirements. The utilization of a group key only applies an approximately 30%
penalty to encryption, which is borne by the CSP because it is responsible for the pairing
operation, not the data owner.

• Crucially, the data owner does not participate in the key generation activity in the proposed
protocol; the manager does so instead.

• The optional re-encryption operation is only a fraction, approximately 27%, of the total
encryption operation in terms of the period of computation, and is also performed by the
CSP without burdening the data owner.

7.2 Simulation

A custom simulation program was developed which permits an assessment of the scalability of
the proposed scheme. The simulation program was executed on a desktop computer but was
calibrated with the function timing results from the benchmarks obtained as described in the
previous Section 7.1. Various parameters may be adjusted in the simulation which highlight the
differences in the algorithms discussed.

An initial unauthorized user population is modelled, and in each round of the simulation, users
randomly join or leave a user set that is authorized to access a particular data record. A single data
owner responsible for data encryption is modelled. Each user randomly takes an action each round,
with some predefined probability; actions include accessing the encrypted data and performing
a decryption, or joining or leaving the authorized user set and thus triggering appropriate key
generation activities. The encrypted data record stored in the cloud may also be replaced in a

14



www.manaraa.com

0	  

500	  

1000	  

1500	  

2000	  

2500	  

Setup	  (owner)	   Setup	  (manager)	   KeyGen	  	  	  	  	  	  	  	  	  	   Encrypt	  (owner)	   Encrypt	  (cloud)	   Decrypt	   Re-‐Encrypt	  (setup)	   Re-‐Encrypt	  

Av
er
ag
e	  
(m

e	  
(m

s)
	  

Cryptographic	  opera(ons	  

Processing	  dura(on	  of	  crypographic	  opera(ons	  

Baseline	  

Proposed	  (no	  GK)	  

Proposed	  (with	  GK)	  

Figure 4: Processing time of cryptographic operations in the baseline and proposed protocols.

round by the data owner, once it has outlived its usefulness, with more recent data; this initiates
a new key setup phase.

In Figures 5, 6, 7, and 8, the simulation results for one simulation run of each algorithm are
shown, with the processing workload shown over time for each entity (the data owner, the manager,
the CSP, and the total set of users involved in accessing the data record stored in the cloud). The
workloads are directly based on the cryptographic function profiling results found in Section 7.1
so that calibration was done with real-world data. The simulation was run with the adjustable
parameters specified in Table 7.2. The irregularities found in the plots are due to the probabilistic
nature of the events executed in the simulation.

The following observations may be made with respect to the results of the illustrated runs
showing various dominant roles in the system:

Parameter Value

Initial unauthorized user population 10,000 users
Length of each round 1 hour
Total length of all rounds simulated 1 year
Probability of a user joining the authorized set 0.5%
Probability of a user leaving the authorized set 0.5%
Probability of a user downloading the cloud data 5%
Probability of the cloud data being replaced 5%

Total joins in simulation run 397,000
Total accesses in simulation run 396,000
Total leaves in simulation run 40,000
Total data replacements in simulation run 419

Table 6: Parameters for simulation.

15



www.manaraa.com

1	  

10	  

100	  

1000	  

10000	  

100000	  

0	   1000	   2000	   3000	   4000	   5000	   6000	   7000	   8000	  

To
ta
l	  h
ou

rs
	  o
f	  p

ro
ce
ss
in
g	  
(lo

g	  
sc
al
e)
	  

Hours	  elapsed	  

Processing	  Workload	  for	  the	  Mobile	  Data	  Owner	  

BSW	  

Proposed	  

Proposed	  (with	  group	  key)	  

Figure 5: Processing workload for the mobile data owner.

1	  

10	  

100	  

1000	  

10000	  

100000	  

0	   1000	   2000	   3000	   4000	   5000	   6000	   7000	   8000	  

To
ta
l	  h
ou

rs
	  o
f	  p

ro
ce
ss
in
g	  
(lo

g	  
sc
al
e)
	  

Hours	  elapsed	  

Processing	  Workload	  for	  the	  Manager	  

BSW	  

Proposed	  

Proposed	  (with	  group	  key)	  

Figure 6: Processing workload for the manager.

16



www.manaraa.com

0	  

1	  

2	  

3	  

4	  

5	  

0	   1000	   2000	   3000	   4000	   5000	   6000	   7000	   8000	  

To
ta
l	  h
ou

rs
	  o
f	  p

ro
ce
ss
in
g	  

Hours	  elapsed	  

Processing	  Workload	  for	  the	  Cloud	  Provider	  

BSW	  

Proposed	  

Proposed	  (with	  group	  key)	  

Figure 7: Processing workload for the cloud provider.

0	  

50	  

100	  

150	  

200	  

250	  

0	   1000	   2000	   3000	   4000	   5000	   6000	   7000	   8000	  

To
ta
l	  h
ou

rs
	  o
f	  p

ro
ce
ss
in
g	  

Hours	  elapsed	  

Processing	  Workload	  for	  the	  Mobile	  Users	  (Readers)	  

BSW	  

Proposed	  

Proposed	  (with	  group	  key)	  

Figure 8: Processing workload for the mobile user (reader) population.

17



www.manaraa.com

1. In the BSW algorithm [2], the dominant workload is undertaken by the data owner, which
participates in not only the encryption of the user data, but also in the data secret key
generation for each new user, as shown in Figure 5. The owner must also re-generate keys for
all users whenever a revocation occurs, without assistance of any other network entity, based
on the assumption that revocation is only possible through modification of attributes for the
user in question. Since the data owner is presumed to be a mobile device in the assumed
system model, the scalability potential appears inadequate.

2. In the proposed algorithm without the use of a group key, the manager becomes responsible
for the main workload of the key re-generation activity, which entails a pairing operation,
as shown in Figure 6. The manager is expected to be able to scale accordingly to meet
the processing demands, but requires sufficient client infrastructure to do so, which may be
uneconomical.

3. In the proposed algorithm with the use of a group key, the manager is still responsible for
most of the key re-generation activity, but revocation is now handled through re-encryption
of the group key, a task performed by the cloud provider, as shown in Figure 7; this results in
a much lower overall workload in the system. The additional decryption cost for the reader
population is also modest, as shown in Figure 8. Hence, this algorithm is considered the best
candidate for a highly scalable mobile cloud computing application.

8 Conclusions

A key management system has been proposed for data outsourcing applications, whereby attribute-
based encryption effectively permits authorized users to access secure content in the cloud based
on the satisfaction of an attribute-based policy. The scheme has been modified so that a data
owner and a trusted authority co-operate in the key generation and encryption processes such
that computationally-intensive cryptographic operations and requests are minimized for the data
owner; this is of importance to a population of mobile users that must conserve their consumption
of battery and usage of wireless communication. Furthermore, a hybrid protocol is proposed that
optionally allows message encryption based on a group key, allowing the user membership to be
further refined. Additionally, it allows re-encryption to occur, and thus revocation to become
efficient without necessitating existing common remedies and their limitations, such as expiration
of attributes specified in the attribute-based policy. The proposed protocol in similar in overall
performance to the original ciphertext-policy attribute-based-encryption idea, while significantly
lessening the computational and traffic burden on the mobile data owner. Thus, the proposal is
useful for securing mobile cloud computing with very large user populations.

Acknowledgments

This work was supported in part by a National Sciences and Engineering Research Council (NSERC) grant
awarded to Dr. Hasan, and an NSERC CGS Doctoral scholarship awarded to Piotr Tysowski.

18



www.manaraa.com

References

[1] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones:
a measurement study and implications for network applications,” in Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 280–293.

[2] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-Based Encryption,” in Proceedings of the
2007 IEEE Symposium on Security and Privacy, ser. SP ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 321–334.

[3] A. Tassanaviboon and G. Gong, “OAuth and ABE based authorization in semi-trusted cloud computing: aauth,”
in Proceedings of the second international workshop on Data intensive computing in the clouds, ser. DataCloud-
SC ’11. New York, NY, USA: ACM, 2011, pp. 41–50.

[4] X. Liang, R. Lu, and X. Lin, “Ciphertext policy attribute based encryption with efficient revocation,” University
of Waterloo, Technical Report BBCR, 2011.

[5] J. Hur and D. K. Noh, “Attribute-Based Access Control with Efficient Revocation in Data Outsourcing Systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 1214–1221, 2011.

[6] P. Tysowski and M. A. Hasan, “Towards Secure Communication for Highly Scalable Mobile Applications in
Cloud Computing Systems,” Centre for Applied Cryptographic Research (CACR), University of Waterloo, Tech.
Rep. 33, 2011.

[7] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption schemes with applications to
secure distributed storage,” ACM Transactions of Information and System Security, vol. 9, pp. 1–30, Feb. 2006.

[8] Q. Liu, G. Wang, and J. Wu, “Clock-based proxy re-encryption scheme in unreliable clouds,” in Parallel Pro-
cessing Workshops (ICPPW), 2012 41st International Conference on, sept. 2012, pp. 304 –305.

[9] J.-M. Do, Y.-J. Song, and N. Park, “Attribute based proxy re-encryption for data confidentiality in cloud
computing environments,” in Computers, Networks, Systems and Industrial Engineering (CNSI), 2011 First
ACIS/JNU International Conference on, may 2011, pp. 248 –251.

[10] J. Wang, “Java Realization for Ciphertext-Policy Attribute-Based Encryption,” 2012. [Online]. Available:
http://github.com/wakemecn

[11] A. De Caro, “Java Pairing-Based Cryptography Library,” 2012. [Online]. Available:
http://libeccio.dia.unisa.it/projects/jpbc/

[12] B. Lynn, “PBC (Pairing-Based Cryptography) Library,” 2012. [Online]. Available:
http://crypto.stanford.edu/pbc/

19


